Adrenergic nerves activate an angio-metabolic switch in prostate cancer

ScienceNOW Daily News Feed - Jue, 10/19/2017 - 11:22

Nerves closely associate with blood vessels and help to pattern the vasculature during development. Recent work suggests that newly formed nerve fibers may regulate the tumor microenvironment, but their exact functions are unclear. Studying mouse models of prostate cancer, we show that endothelial β-adrenergic receptor signaling via adrenergic nerve–derived noradrenaline in the prostate stroma is critical for activation of an angiogenic switch that fuels exponential tumor growth. Mechanistically, this occurs through alteration of endothelial cell metabolism. Endothelial cells typically rely on aerobic glycolysis for angiogenesis. We found that the loss of endothelial Adrb2, the gene encoding the β2-adrenergic receptor, leads to inhibition of angiogenesis through enhancement of endothelial oxidative phosphorylation. Codeletion of Adrb2 and Cox10, a gene encoding a cytochrome IV oxidase assembly factor, prevented the metabolic shift induced by Adrb2 deletion and rescued prostate cancer progression. This cross-talk between nerves and endothelial metabolism could potentially be targeted as an anticancer therapy.

MOF-derived cobalt nanoparticles catalyze a general synthesis of amines

ScienceNOW Daily News Feed - Jue, 10/19/2017 - 11:22

The development of base metal catalysts for the synthesis of pharmaceutically relevant compounds remains an important goal of chemical research. Here, we report that cobalt nanoparticles encapsulated by a graphitic shell are broadly effective reductive amination catalysts. Their convenient and practical preparation entailed template assembly of cobalt-diamine-dicarboxylic acid metal organic frameworks on carbon and subsequent pyrolysis under inert atmosphere. The resulting stable and reusable catalysts were active for synthesis of primary, secondary, tertiary, and N-methylamines (more than 140 examples). The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, or nitro compounds, and molecular hydrogen under industrially viable and scalable conditions, offering cost-effective access to numerous amines, amino acid derivatives, and more complex drug targets.


Subscribe to Facultad de Ciencias agregador