Escuelas

ScienceNOW Daily News Feed

Subscribe to canal de noticias ScienceNOW Daily News Feed ScienceNOW Daily News Feed
Science RSS feed -- current issue
Actualizado: hace 29 mins 43 segs

Fans enable water strider adaptation

Jue, 10/19/2017 - 11:22

A strategy for drug discovery

Jue, 10/19/2017 - 11:22

Structure of human mTORC1 components

Jue, 10/19/2017 - 11:22

Learning the smell of danger

Jue, 10/19/2017 - 11:22

Selecting memory T cells

Jue, 10/19/2017 - 11:22

A hammer is a hammer is a hammer

Jue, 10/19/2017 - 11:22

Small groups influence large networks

Jue, 10/19/2017 - 11:22

PolyQ caught in the act?

Jue, 10/19/2017 - 11:22

Sorting out submarine canyons

Jue, 10/19/2017 - 11:22

Notch signaling schools thymic DCs

Jue, 10/19/2017 - 11:22

The internet and political polarization

Jue, 10/19/2017 - 11:22

Adrenergic nerves activate an angio-metabolic switch in prostate cancer

Jue, 10/19/2017 - 11:22

Nerves closely associate with blood vessels and help to pattern the vasculature during development. Recent work suggests that newly formed nerve fibers may regulate the tumor microenvironment, but their exact functions are unclear. Studying mouse models of prostate cancer, we show that endothelial β-adrenergic receptor signaling via adrenergic nerve–derived noradrenaline in the prostate stroma is critical for activation of an angiogenic switch that fuels exponential tumor growth. Mechanistically, this occurs through alteration of endothelial cell metabolism. Endothelial cells typically rely on aerobic glycolysis for angiogenesis. We found that the loss of endothelial Adrb2, the gene encoding the β2-adrenergic receptor, leads to inhibition of angiogenesis through enhancement of endothelial oxidative phosphorylation. Codeletion of Adrb2 and Cox10, a gene encoding a cytochrome IV oxidase assembly factor, prevented the metabolic shift induced by Adrb2 deletion and rescued prostate cancer progression. This cross-talk between nerves and endothelial metabolism could potentially be targeted as an anticancer therapy.

MOF-derived cobalt nanoparticles catalyze a general synthesis of amines

Jue, 10/19/2017 - 11:22

The development of base metal catalysts for the synthesis of pharmaceutically relevant compounds remains an important goal of chemical research. Here, we report that cobalt nanoparticles encapsulated by a graphitic shell are broadly effective reductive amination catalysts. Their convenient and practical preparation entailed template assembly of cobalt-diamine-dicarboxylic acid metal organic frameworks on carbon and subsequent pyrolysis under inert atmosphere. The resulting stable and reusable catalysts were active for synthesis of primary, secondary, tertiary, and N-methylamines (more than 140 examples). The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, or nitro compounds, and molecular hydrogen under industrially viable and scalable conditions, offering cost-effective access to numerous amines, amino acid derivatives, and more complex drug targets.

A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides

Jue, 10/19/2017 - 11:22

Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO2, Al2O3, and Gd2O3. The liquid metal–based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.

Encoding of vinylidene isomerization in its anion photoelectron spectrum

Jue, 10/19/2017 - 11:22

Vinylidene-acetylene isomerization is the prototypical example of a 1,2-hydrogen shift, one of the most important classes of isomerization reactions in organic chemistry. This reaction was investigated with quantum state specificity by high-resolution photoelectron spectroscopy of the vinylidene anions H2CC and D2CC and quantum dynamics calculations. Peaks in the photoelectron spectra are considerably narrower than in previous work and reveal subtleties in the isomerization dynamics of neutral vinylidene, as well as vibronic coupling with an excited state of vinylidene. Comparison with theory permits assignment of most spectral features to eigenstates dominated by vinylidene character. However, excitation of the 6 in-plane rocking mode in H2CC results in appreciable tunneling-facilitated mixing with highly vibrationally excited states of acetylene, leading to broadening and/or spectral fine structure that is largely suppressed for analogous vibrational levels of D2CC.

Rotary and linear molecular motors driven by pulses of a chemical fuel

Jue, 10/19/2017 - 11:22

Many biomolecular motors catalyze the hydrolysis of chemical fuels, such as adenosine triphosphate, and use the energy released to direct motion through information ratchet mechanisms. Here we describe chemically-driven artificial rotary and linear molecular motors that operate through a fundamentally different type of mechanism. The directional rotation of [2]- and [3]catenane rotary molecular motors and the transport of substrates away from equilibrium by a linear molecular pump are induced by acid-base oscillations. The changes simultaneously switch the binding site affinities and the labilities of barriers on the track, creating an energy ratchet. The linear and rotary molecular motors are driven by aliquots of a chemical fuel, trichloroacetic acid. A single fuel pulse generates 360° unidirectional rotation of up to 87% of crown ethers in a [2]catenane rotary motor.

Chaos-assisted broadband momentum transformation in optical microresonators

Jue, 10/19/2017 - 11:22

The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

Defibrillation of soft porous metal-organic frameworks with electric fields

Jue, 10/19/2017 - 11:22

Gas transport through metal-organic framework membranes (MOFs) was switched in situ by applying an external electric field (E-field). The switching of gas permeation upon E-field polarization could be explained by the structural transformation of the zeolitic imidazolate framework ZIF-8 into polymorphs with more rigid lattices. Permeation measurements under a direct-current E-field poling of 500 volts per millimeter showed reversibly controlled switching of the ZIF-8 into polar polymorphs, which was confirmed by x-ray diffraction and ab initio calculations. The stiffening of the lattice causes a reduction in gas transport through the membrane and sharpens the molecular sieving capability. Dielectric spectroscopy, polarization, and deuterium nuclear magnetic resonance studies revealed low-frequency resonances of ZIF-8 that we attribute to lattice flexibility and linker movement. Upon E-field polarization, we observed a defibrillation of the different lattice motions.

Single polymer growth dynamics

Jue, 10/19/2017 - 11:22

In chain-growth polymerization, a chain grows continually to reach thousands of subunits. However, the real-time dynamics of chain growth remains unknown. Using magnetic tweezers, we visualized real-time polymer growth at the single-polymer level. Focusing on ring-opening metathesis polymerization, we found that the extension of a growing polymer under a pulling force does not increase continuously but exhibits wait-and-jump steps. These steps are attributable to the formation and unraveling of conformational entanglements from newly incorporated monomers, whose key features can be recapitulated with molecular dynamics simulations. The configurations of these entanglements appear to play a key role in determining the polymerization rates and the dispersion among individual polymers.

Páginas